Pandas is a Python library used for working with data sets. It has functions for analyzing, cleaning, exploring, and manipulating data.
pip install pandas
import pandas as pd
import pandas as pd
a = [1, 7, 2]
myvar = pd.Series(a)
print(myvar)
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
myvar = pd.DataFrame(data)
print(myvar)
import pandas as pd
myvar = pd.Panel()
print(myvar)
import pandas as pd
df = pd.read_csv('data.csv')
print(df.to_string())
import pandas as pd
df = pd.read_json('data.json')
print(df.to_string())
import pandas as pd
df = pd.read_excel('data.xlsx')
print(df.to_string())
import pandas as pd
df = pd.read_html('data.html')
print(df.to_string())
import pandas as pd
import mysql.connector
mydb = mysql.connector.connect(
host="localhost",
user="yourusername",
password="yourpassword",
database="mydatabase"
)
df = pd.read_sql("SELECT * FROM customers", con = mydb)
print(df.to_string())
import pandas as pd
df = pd.read_csv('data.csv')
print(df.head(10))
import pandas as pd
df = pd.read_csv('data.csv')
print(df.tail(10))
import pandas as pd
df = pd.read_csv('data.csv')
df.set_index('Date', inplace = True)
print(df)
import pandas as pd
df = pd.read_csv('data.csv')
df.set_index('Date', inplace = True)
print(df.loc["2019-01-31"])
import pandas as pd
df = pd.read_csv('data.csv')
df.set_index('Date', inplace = True)
print(df.iloc[3])
import pandas as pd
df = pd.read_csv('data.csv')
print(df.info())
import pandas as pd
df = pd.read_csv('data.csv')
print(df.shape)
import pandas as pd
df = pd.read_csv('data.csv')
print(df.columns)
import pandas as pd
df = pd.read_csv('data.csv')
print(df.dtypes)
import pandas as pd
df = pd.read_csv('data.csv')
df["Date"] = pd.to_datetime(df["Date"])
df["Date"] = df["Date"].astype("datetime64")
print(df.dtypes)
import pandas as pd
df = pd.read_csv('data.csv')
df["Date"] = pd.to_datetime(df["Date"])
print(df["Date"])
import pandas as pd
df = pd.read_csv('data.csv')
x = df["Date"].unique()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df["Date"].nunique()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df["Date"].count()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df["Date"].value_counts()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
df.sort_values("Date", inplace = True)
print(df)
import pandas as pd
df = pd.read_csv('data.csv')
x = df.isnull()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df.notnull()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
df.dropna(inplace = True)
print(df)
import pandas as pd
df = pd.read_csv('data.csv')
df.fillna(130, inplace = True)
print(df)
import pandas as pd
df = pd.read_csv('data.csv')
df.drop_duplicates(inplace = True)
print(df)
import pandas as pd
df = pd.read_csv('data.csv')
df.drop("Date", axis = 1, inplace = True)
print(df)
import pandas as pd
df = pd.read_csv('data.csv')
for index, row in df.iterrows():
print(index, row)
import pandas as pd
df = pd.read_csv('data.csv')
for row in df.itertuples():
print(row)
import pandas as pd
df = pd.read_csv('data.csv')
x = df.copy()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
df2 = pd.read_csv('data2.csv')
x = df.append(df2)
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
df2 = pd.read_csv('data2.csv')
x = pd.merge(df, df2, on = "Date")
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
df2 = pd.read_csv('data2.csv')
x = df.join(df2)
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
df2 = pd.read_csv('data2.csv')
x = pd.concat([df, df2])
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df.pivot(index = "Date", columns = "Calories", values = "Duration")
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df.pivot_table(index = "Date", columns = "Calories", values = "Duration")
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df.stack()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
x = df.unstack()
print(x)
import pandas as pd
df = pd.read_csv('data.csv')
df["Calories"].fillna(130, inplace = True)
import pandas as pd
df = pd.read_csv('data.csv')
x = df["Calories"].mean()
df["Calories"].fillna(x, inplace = True)
import pandas as pd
df = pd.read_csv('data.csv')
df['Date'] = pd.to_datetime(df['Date'])
import pandas as pd
df = pd.read_csv('data.csv')
df.loc[df["Duration"] <= 60, "Duration"] = 45
import pandas as pd
df = pd.read_csv('data.csv')
df.drop_duplicates(inplace = True)
import pandas as pd
df = pd.read_csv('data.csv')
df.corr()
import pandas as pd
df = pd.read_csv('data.csv')
df.transpose()
import pandas as pd
df = pd.read_csv('data.csv')
for index, row in df.iterrows():
print(index, row)
import pandas as pd
df = pd.read_csv('data.csv')
df.sort_values('Duration', inplace = True)
import pandas as pd
df = pd.read_csv('data.csv')
df.plot()
import pandas as pd
df = pd.read_csv('data.csv')
df.plot(kind = 'scatter', x = 'Duration', y = 'Calories')
import pandas as pd
df = pd.read_csv('data.csv')
df["Duration"].plot(kind = 'hist')
import pandas as pd
df = pd.read_csv('data.csv')
df["Duration"].plot(kind = 'bar')
import pandas as pd
df = pd.read_csv('data.csv')
df.plot(kind = 'pie')
import pandas as pd
df = pd.read_csv('data.csv')
df.plot(kind = 'scatter', x = 'Duration', y = 'Calories')
df.plot(kind = 'bar', x = 'Duration', y = 'Calories')