Mean Squared Error (MSE) is a common error function used in regression problems.
def mse(y_true, y_pred):
return np.mean((y_true - y_pred)**2)
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_true, y_pred)
import tensorflow as tf
mse = tf.keras.losses.MeanSquaredError()
mse(y_true, y_pred).numpy()
import torch.nn as nn
mse = nn.MSELoss()
mse(y_true, y_pred).item()
import mxnet as mx
mse = mx.metric.MSE()
mse.update(mx.nd.array(y_true), mx.nd.array(y_pred))
mse.get()
from pyspark.ml.evaluation import RegressionEvaluator
evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="mse")
mse = evaluator.evaluate(predictions)