Mean Absoulte Error (MAE) is a common error function used in regression problems.
import numpy as np
def mean_absolute_error(y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))
mae <- function(y_true, y_pred) {
return(mean(abs(y_true - y_pred)))
}
function mae(y_true, y_pred)
return(mean(abs.(y_true - y_pred)))
end
from sklearn.metrics import mean_absolute_error
error = mean_absolute_error(y_true, y_pred)
import tensorflow as tf
error = tf.keras.losses.MeanAbsoluteError()(y_true, y_pred)
import torch
error = torch.nn.L1Loss()(y_true, y_pred)